Water, Ritual, and Prosperity at the Classical Capital of Bagan, Myanmar (11th to 14th Centuries CE): Preliminary Exploration of the Tuyin-Thetso “Water Mountain” and the Nat Yekan Sacred Water Tank

By
Gyles Iannone
(Trent University)
Pyiet Phyo Kyaw
(University of Mandalay)
Scott Macrae
(Trent University)
Nyein Chan Soe
(Yadanabon University)
And
Saw Tun Lin
(University of Yangon)

The IRAW@Bagan project is aimed at developing an integrated socio-ecological history for residential patterning, agricultural practices, and water management at the classical Burmese (Bama) capital of Bagan, Myanmar (11th to 14th centuries CE). As part of this long-term research program investigations have been initiated in the Tuyin-Thetso uplands, located 11 km southeast of Bagan’s walled and moated epicenter. This mountainous area figures prominently in the chronicles of early Bagan, given that it was one of five places around the city that a royal white elephant carrying a Buddhist tooth-relic kneeled down, prompting King Anawrahta (1044-1077 CE) to build a pagoda (i.e., temple) there. Numerous 13th century religious monuments were subsequently built on the Tuyin Range. Recent explorations in these uplands have drawn attention to an additional feature of historical significance, a rock-cut tank located along the eastern edge of the Thetso-Taung ridge. Referred to by local villagers as Nat Yekan (Spirit Lake), this reservoir appears to have been integral not only to the initial collection and subsequent redistribution of water across the Bagan plain via a series of interconnected canals and reservoirs, but also, through its associated iconographic imagery, it may have been intended to symbolically purify this water, enhancing its fertility prior to its flowing into the city’s peri-urban zone. Hydrological modelling, excavations, and both iconographic and epigraphic analysis are used to build a multilayered understanding of Nat Yekan’s economic, political, religious, and ideological significance during Bagan’s classical era.
Bagan (aka Pagan), like most of the historic Buddhist capitals of Myanmar, was located in the central “dry zone” (Figure 1; Aung-Thwin 1987:88, 1990:1; Aung-Thwin and Aung-Thwin 2012:38; Hudson 2008:553; Stadner 2013:12; Strachan 1989:8) – the country’s “most arid” region (Cooler 1997:19-20) – on the eastern bank of the strategic and economically important Ayeyarwady River (Higham 2001:134; Hudson 2004:221, 265). Recent archaeological assessments support a mid-9th century CE date for the establishment of the Bagan community (Hudson 2004:220, 265-266; Nyunt Nyunt Shwe 2011:26), with the 11th to 14th centuries being the period when Bagan was the capital of a polity that controlled much of what is now the country of Myanmar (Daw Thin Kyi 1966:187; Galloway 2006:35; Higham 2001:134; Hudson 2004:183, 266, Table 15, 2008:555; Hudson et al. 2001:53; Stadner 2011:215-216, 2013:14, 18).

Bagan was subject to a monsoonal rainfall regime, and like other early tropical state formations, it must have been challenged by periods of droughts and/or floods, some minor and short-lived, others major and multi-decadal. Indeed, contemporary communities in the region are frequently challenged by droughts, and severe famines have also been historically documented (Scott 1976:1). The low annual rainfall that characterizes Myanmar’s dry-zone today (500-1000 mm per annum) has led some to presume that ancient Bagan was likely not particularly well suited for irrigation or wet-rice cultivation (Aung-Thwin 1990:8; Cooler 1997:22-23; c.f., Hudson 2004:45, 194). That said, during its florescence the city likely received more rainfall than at present (Hudson 2004:45; Lieberman 2003:101-112; Stadner 2013:12). This is because Bagan’s era of growth and decline coincides with, and was undoubtedly influenced by, two significant climate changes: The Medieval Climate Anomaly (MCA; 900-1300 CE), marked by warmer conditions with increased rainfall, longer monsoon seasons, shorter dry season droughts, and rains more evenly distributed throughout the year – which were ideal conditions for agriculture – and the subsequent Little Ice Age (LIA; 1300-1570 CE), a cooling period that brought negative changes in both rainfall (i.e., droughts) and temperature, and hence deteriorating agricultural conditions (Buckley et al. 2010, 2014; Cook et al. 2010; Lieberman 2003:103, 2009:330, 792, 2011:939; Lieberman and Buckley 2012:1052; Wohlfarth et al. 2016; Wündsch et al. 2014; Yamoah et al. 2017).

Given its dry-zone location, and the vagaries of its monsoonal climate (Lieberman 2011; Lieberman and Buckley 2012), one might expect that Bagan would have developed sophisticated infrastructure to facilitate both the storage and redistribution of water (Hudson 2004:44). Such a complex water management system is, however, not readily apparent in the center’s peri-urban (mixed urban-rural) zone (Cooler 1997:22), at least when compared to its regional contemporaries – such as the Khmer capital of Angkor (Kumma 2009) and the Sinhalese capitals of Anuradhapura and Polonnaruwa (Geekiyange and Pushpakumara 2013; Gilliland et al. 2013) – where exceptionally large reservoirs and extensive canal systems are found. Indeed, it has been suggested that – other than the Ayeyarwady River – access to water was likely an endemic issue at Bagan (Cooler 1997; Luce 1969:7). Does this mean that Bagan’s citizens survived without the benefit of water management infrastructure? Not necessarily. Bagan’s inscriptions and retrospective chronicles inform us that its kings augmented the city’s water supply through the construction of wells, dams, canals, and brick or stone-lined holding tanks (Aung-Thwin 1985:63; Kan Hla 1977:22; Luce 1969:76, 84, 256; Pe Muang Tin and Luce 1923:65, 131;
Having been brought to scholarly attention only recently (Scarborough 2003:62-63; Stargardt 1968:360-361). It is possible that these water management features may have simply silted up over time (Hudson 2004:2, 266). The dearth of such features may also reflect the fact that Bagan’s water management system had a subtler character than those of its contemporaries (Moore et al. 2016:283; Win Kyaing 2016, 2018). Considered in unison, these observations imply that more detailed surface reconnaissance and remote sensing strategies are required to fully appreciate how the Bagan metropolis dealt with seasonal rainfall.

Water Management at Bagan: Investigation by the IRAW@Bagan Research Project

The IRAW@Bagan project – which aims to generate an integrated socio-ecological history for residential patterning, agricultural practices, and water management at Bagan – initiated a more extensive analysis of the metropolis’s water management system in May 2017 through visitations to known water management components, and by searching for additional features (e.g., ponds, wells, canals) using both remote sensing and surface reconnaissance (Figure 2). These activities included the preliminary examination and 3D-imaging of Nat Yekan tank (aka Spirit Lake), located atop the Thetso-Taung ridge, in the northern portion of the Tuyin mountain range (Figure 3). Situated 11 km southeast of the Bagan epicenter, the Tuyin mountain range rises roughly 140 m above the Bagan plain (278 m asl) and runs approximately 14 km NW-SE (Figure 4). Although it comprises a relatively narrow premonitory (ca. 1 km E-W at its base), the northern end of the range – Mount Tuyin proper – figures prominently in the chronicles of early Bagan, as it was one of five places around the city that a royal white elephant carrying a Buddha-tooth-relic kneeled, prompting King Anawrahta (1044-1077 CE) to build a stupa there, now known as the Tuyin-Taung pagoda (Figure 5; Hudson 2004:27; Pe Muang Tin and Luce 1923:91, 109, 119, 147, 158; Stadtnner 2011:222, 230, 2013:43).

The IRAW@Bagan research team was initially drawn to the Tuyin range because it constitutes the only significant upland area on the Bagan plain, and as such it was believed that it would have played a significant role in water management strategies at the city, especially because these would have been based on collecting and redistributing runoff from the monsoon showers (Win Kyaing 2016, 2018). Key here is the potential connection between the flow of runoff downslope, from the western side of the Tuyin range, towards the Mya Kan Reservoir (Figure 3; aka Emerald Lake or Kyanzittha Reservoir; Aung-Thwin 1990:28; Luce 1969:56; Moore et al. 2016:294-295). According to an inscribed pillar that once sat on it bank, this reservoir was built in the late 11th century by King Kyanzittha (1084-1113 CE), although Luce (1969:76, 345-346) notes that the retrospective chronicles erroneously attribute it to a later ruler, King Kyazwa (1235-1249 CE; see also Cooler 1997:29; Hudson 2004:28).

Intrigued by the role that the Tuyin range likely played in Bagan’s broader water management system, we initiated reconnaissance, mapping, hydrological modeling, and excavations on the Thetso-Taung ridge in May 2018. Our excavation program focused on two relic water tanks situated roughly 700 m south of the Tuyin-Taung Pagoda (Figure 6), one located on the eastern side of the Thetso-Taung ridge – an embankment-style tank known as Ka Tak Kan (sacred garlic pear or temple tree [Crataeva religiosa] lake) – the other being Nat Yekan, a rock-cut reservoir situated 60 m to the west, directly above the Mya Kan reservoir (Ni Tut 2013:166; see also Moore et al. 2016:295; Nyan Hlaing Lynn 2017; Win Kyaing 2018:283). Having been brought to scholarly attention only recently, Nat Yekan tank had yet to receive any
detailed investigation, although two “popular” publications had previously focused on this important water management feature (Nit Tut 2013; Nyan Hlaing Lynn 2017; but see also Moore et al. 2016:295; Win Kyaing 2018:283). Our own investigations indicate that Nat Yekan tank was hewn directly from the sandstone substrate, although on its eastern side an 11 m long, 5 m high sandstone slab retaining wall was used to close off the reservoir (Figure 7). A smaller (2.7 m long) section of retaining wall was also used to close of the eastern corner of the north wall. The square tank is roughly 16 m x 16 m in size, and if filled to capacity it would have held as much as 2000 m3 of water. Today, the tank only holds water on a seasonal basis (Figures 8 and 9).

A Socio-Ecological History for Nat Yekan Tank and its Water Management System

Our 2018 excavations examined the area associated with the embankment wall in the northwest corner of Nat Yekan tank, and the central portion and northern embankment wall of the Ka Tak Kan tank (Figure 10). These investigations generated important insights into the basic engineering techniques associated with water tank construction at classical Bagan. Unfortunately, our excavations did not produce significant quantities of ceramics – bulk lots were limited to small collections of weathered earthenware (Figure 11) – and we did not encounter suitable materials for radiocarbon dating. For these reasons, our excavation results have been considered alongside the epigraphic and chronicle histories in our efforts to craft a socio-ecological history for both the Nat Yekan and Ka Tak Kan tanks, and the broader water management system of which they were part.

Phase 1: The Late 11th Century Quarry Phase

Nat Yekan saw its first usage as a quarry for sandstone slabs (Figure 12; Nyan Hlaing Lynn 2017; Win Kyaing 2016, 2018:283), and one or more of the three stairs leading into the tank may have been carved during the “quarry phase” to facilitate removal of these building materials (Figure 13). In terms of dating this quarrying activity, the retrospective chronicles relate that stone was quarried from Mount Tuyin to build the Shwezigon Pagoda (Figure 14; Pe Maung Tin and Luce 1923:109), which was commissioned by King Kyanzittha and completed in 1086 CE (Luce 1969:43, 77). This is one of only four major architectural features at Bagan constructed from sandstone, the others being the Nanpaya and Kyauk-Gu-Umin temples, and the Mya Kan library, the latter situated at the base of Mount Tuyin. Also noteworthy is a Glass Palace Chronicle entry that states that the Shwezigon quarrying activities on Mount Tuyin produced sandstone building blocks “three spans in length, one span in width” (Pe Maung Tin and Luce 1923:109). If the traditional taung measurement was used (a measurement from the thumb to the elbow; Moore et al. 2018:124, 129), this would mean that the blocks were 45.72 cm wide and 137.16 cm long. The quarry scars exposed within Nat Yekan, and those found beneath its embankment wall during our 2018 excavations (Figure 15) roughly conform to the Taung width, although they vary in their length. In combination, this evidence provides some support for the idea that Nat Yekan was quarried out in the late 11th century as part of the Shwezigon construction program. Indeed, this massive pagoda would have called for a significant amount of
stone, and Nat Yekan is the largest “quarry” site so far identified on the Tuyin range, other than the more informal quarry area located on the northwestern flanks of Mount Tuyin proper (Figure 16).

Phase 2: Late 11th – 14th Century Spillway Phase

The Reservoir. The transformation of Nat Yekan quarry into a reservoir with a spillway outlet involved the closing off of a large break in the natural sandstone wall on the east side of the quarry using a thick embankment wall faced with stacked sandstone slabs (Figure 17), and the laying down of a ca. 50 cm thick clay floor lining (Figure 18; the latter was removed during the 2009 cleaning conducted by the Tuyin Monastery and its local village supporters, although remnants of this lining have been identified within the wall and floor crevasses of the stone-cut tank). Given the highly compact nature and permeability characteristics of the clay lining, it can be confidentially stated that – as long as sufficient precipitation fell during the monsoon season and as long as the lining was in place and functioning properly – Nat Yekan was capable of retaining water year-round. At the time of its modification into a reservoir, its maximum water holding capacity was somewhere around 1200 m³.

In terms of dating the transformation from a quarry to a reservoir, we feel that this occurred over a fairly short period of time, given that some of the quarry activities were also employed to create the spillway situated in the northwest corner of the tank. The imprecisely dated Paw Daw Mu Phaya inscription does document the donation of a sandstone lake on Thetso-Taung in 1082 CE (Michael Aung-Thwin, personal communication, October 10, 2018), but we cannot directly confirm that it is the Nat Yekan tank that is referred to in this historic record. Other data directly related to Nat Yekan does suggest that the quarry was transformed into a reservoir with a spillway in its northwest corner sometime in the very late 11th or early 12th century CE, including the application of a basic clay brick chronology outlined by Thet Oo and Maung Hlaing (2014:7; see also Aung Myint and Moore 1991-1992; Moore 2007:18, 2013:313; cf. Hudson 2004:123). Specifically, a large (35 cm long by 5 cm thick) 11th to early 12th century Early Bagan period (1044 to 1113 CE) brick was included in the cut-stone facing wall that had been used to close off the east side of the tank during its transformation into a reservoir (Figure 19). This brick adheres to the “average” brick size for Bagan suggested by Cooler (2018) to be 36 x 18 x 6 cm (cf. Moore et al. 2018:129, 139). That the reservoir continued to be maintained into the 12th and 13th centuries is implied by the presence of a smaller brick (22 cm long by 6 cm thick) in the same section of the east wall dating to either the Middle (1113-1174 CE) or Late Bagan (1174-1300 CE) period (Figure 20). This use-life is corroborated by one of the rare iconographic elements found carved on the west wall of Nat Yekan tank – a water labyrinth – which is an image also depicted in a mural inside the early 12th century Lokhaiteikpan Pagoda (1125 CE), and a similar water labyrinth occurs in the early 13th century (1223 CE) Le-myet-hna Pagoda murals (Figure 21). These findings support the idea that although this iconographic element was used sparingly at Bagan, it was part of the iconographic inventory used in the mural corpus during the “spillway phase,” when Nat Yekan is proposed to have served as a water tank that directed its overflow into the Mya Kan reservoir.
The Spillway. Additional insights into the timing of the modifications that transformed the quarry into a reservoir come from the spillway outlet itself, a section of which was exposed during our 2018 excavations beneath Nat Yekan’s northwest embankment wall (Figure 22). Our investigations demonstrated that this area was first modified during the removal of hard sandstone slabs destined for construction projects on the Bagan plain, and possibly the mountain top itself. This quarrying not only formed the deep reservoir portion of the tank, and the three stairs leading down into it, but also the spillway. Specifically, the quarrying activities lowered the northwest corner of the tank’s bedrock embankment wall significantly compared to those encircling the rest of the tank, extending down to a layer of softer, laminated mudstone not suitable for building blocks, but still impermeable enough to maintain water flow. The natural south/southeast-to-north/northwest dip of this lower bedrock level would have enhanced the initial gravity-based outflow of water from the tank, thus forming the foundation of the spillway feature.

An exception to the aforementioned quarrying strategy was evident in the eastern side of our excavations, where an elevated section of the harder sandstone suitable for construction projects was preserved. The quarrying in this area formed an in-stepping “choke” zone that would have significantly constricted the width of the flow channel immediately preceding the spillway. In terms of open channel hydraulic engineering (Farrington 1980; Ortloff et al. 1982), the choke feature and spillway – in combination – would have maintained higher water levels and diminished flow velocity behind the spillway, increased the velocity of the water flow but decreased its depth immediately after the spillway (supercritical flow), and stimulated a subsequent “hydraulic jump,” resulting in higher water levels and decreased flow velocity downstream of the spillway (subcritical flow; e.g., Farrington 1980:287-301; Ortloff et al. 1982:582-594). Such engineering would have fostered low velocity flow, maintained critical water depths, and inhibited erosion (Ortloff et al. 1982:583) along a cobble-walled channel that funneled overflow water away from Nat Yekan, to the northwest, and ultimately, the Mya Kan reservoir. Continued use of this tried-and-true method of gravity-driven, inertia-aided (Farrington 1980:294) aqueduct construction can be witnessed south of Bagan, in the Minbu rice-growing region (see Figure 22).

The spillway interpretation is lent credence by an inscribed pillar (Mya Kan Inscription) and related Glass Palace Chronicle entry indicating that King Kyansittha “dammed” the Mya Kan reservoir (Emerald Lake) at the western base of Mount Tuyin “before 1098” CE (Duroiselle 1920:131-143; Luce 1969:76-77; see Table 9.2), and that the water for the Mya Kan reservoir fell from the nearby mountain, clearly referencing the western side of Tuyin-Thetso (Luce 1969:56, 345; Pe Maung Tin and Luce 1923:156; see Figures 23 and 24). The related chronicle entry specifically states that the King:

“dammed the water falling from the foot of Mt. Tuywin [Tuyin] and made a great lake. He filled it with the five kinds of lotus and caused all manner of birds, duck, sheldrake, crane, waterfowl, and ruddy goose to take their joy and pastime therein. Near the lake he laid out many tâ of cultivated fields; it is said he ate [produced] three crops a year. Hard by the lake he built a pleasant royal lodge, and took delight in study seven times a day” (Luce 1969:345; Pe Muang Tin and Luce 1923:156; emphasis ours).
Our 2017-2018 reconnaissance demonstrated that Nat Yekan’s spillway feature is indeed connected to a seasonally dry water fall (Figure 24) situated on the western edge of Thetso-Taung summit via a water channel that is, at least partially, culturally modified. Our on-the-ground investigations also confirmed that water falling from this locale would have flowed directly into the Mya Kan reservoir via a channel that originates at the base of the water fall (Figure 25). We strongly believe that it is this water fall area that is being referenced in the Glass Palace Chronicle entry, and we therefore posit that the Nat Yekan reservoir that fed this water fall was likely functioning coincidently, or shortly after, the construction of the Mya Kan reservoir, in and around 1098 CE.

The Tank Interior. Other features of Nat Yekan also speak to its broader function, beyond that of simply water collection. A round hole, ca 20 cm in diameter, is carved into the very center of the tank (Figure 26). This depression likely held a pillar that served as a water depth measuring device, as is seen in some nearby village and pagoda water tanks today (Figures 27 and 28). Such pillars are often topped with carved lotus buds, a symbol that is connected to purity, fertility, and prosperity in the Buddhist belief system (Ward 1952). More specifically, the lotus symbolizes “creation out of water” (Ward 1952:138; Wolters 1999:81). That such a “lotus bud pillar” was once positioned in the center of Nat Yekan tank is leant support by the discovery in 2018 of one half of a stone pillar support with a cavity precisely the same size as the hole in the bottom of the tank (Figure 29).

As noted previously, Nat Yekan tank also contains three flights of carved stairs, one on the west wall (running from south to north), one in the northwest corner (running roughly southwest to northeast), and one in the northeast corner of the tank (running east to west; see Figure 13). Each of these stairways descends into the tank to a different level. A fourth set of steps was carved into the east wall – below the stone-slab retaining wall – but these are likely symbolic, as they are far too small for actual use (Figure 30). The multiple stairways leading down into the Nat Yekan tank are reminiscent of the intricate stairway systems associated with the stepwells (baoli) of Medieval India. These stepwells were long used to provide potable water and to contend with drought conditions, in addition to offering space for leisure, social gatherings, and ritual practices (Bhattacharya 2015:36; Shubhangi and Shireesh 2015). Significantly, Indian stepwells “were often carved profusely with elaborate detail” (Bhattacharya 2015:36), and they were frequently associated with temples (Shubhangi and Shireesh 2015:29). Studies of the Indian stepwells indicate that they vary considerably in terms of their “size and form types, scales, access and use and the potentiality they have” (Shubhangi and Shireesh 2015:32).

Iconography. A number of iconographic images are also carved into Nat Yekan’s walls (Ni Tut 2013; Nyan Hlaing Lynn 2017; Win Kyaing 2018:283). These include: 1) a water labyrinth – likely representing the water tank “with a thousand bends in the bank and a hundred bathing places” in the Mahosadha-Jataka #546 (Luce 1956:294, 301) – a water lizard or “water dragon,” a Naga-serpent, two hamsa birds (possibly the Ruddy Shelduck, a goose that migrates from the Himalayas, through India, and into Myanmar; Stadnner 2011:134), a large fish, and a possible third goose, all facing south, and all found in association with the stair carved into the west wall (Figure 31); 2) a Naga-Buddha or Buddha-Muchalinda image situated in a niche – representing the story of the Naga King using his hood and tail to protect the meditating Buddha from a rain storm in the 6th week following his enlightenment (Fisher 1993:23, 175; Leidy 2008:170; Luce 1969:171; Moore 2007:244; Stadnner 2013:34; Ward 1952:144) – and a crocodile or Makara (water monster), both found in the northwest corner of the tank (Figure 32); and, 3) an egret or crane, three tortoises, and two small fish facing each other, all carved into the tank’s southern
wall (Figure 33). Water imagery is clearly evident in all of these depictions, not only in basic biological terms, but also with respect to the association that these symbols have with water in the Jataka Stories of the Buddha’s previous lives, and in the life of Gautama Buddha himself. Many are also tied to notions of purity, fertility, prosperity, and power within the Buddhist belief system (e.g., Beer 2003:5, 69, 72, 77, 97; Fisher 1993:23; Ward 1952:144-146). Considered in unison, this iconography suggests that, although it undoubtedly served as a source of potable water for both monks and construction crews (Moore et al. 2016:295), broader symbolic meaning is also inherent in Nat Yekan tank. The question remains, to what purpose was such symbolism aimed?

Ideology: One final feature of Nat Yekan provides a clue to the tank’s broader significance. As part of the creation of the spillway feature, the northwest corner of the tank’s natural sandstone enclosure wall was purposely cut down by roughly 1-1.5 m, in a clearly symmetrically manner (Figure 34). Intriguingly, the very center of this lower portion of the tank’s rock-cut wall – which is roughly 8 m in length – articulates precisely with the top of the carved niche containing the Naga-Buddha image, and it is also axially aligned with the most western inside face of the in-stepped choke feature that constricted the flow channel immediately preceding the spillway. Also noteworthy is the fact that the northwest stair begins its descent into the tank at exactly the same elevation as the down-cut portion of the enclosure wall and terminates at an altar feature at the base of the Muchalinda image. In other words, the lower portion of the tank’s rock-cut enclosure wall, the northwest stairway, the altar, the Naga-Buddha image, and the spillway were unquestionably all used at the same time, and they were also symmetrically arranged. We therefore suggest that the northwest portion of Nat Yekan tank initially served as a rock-cut spillway that directed overflow water across the top of the Naga-Buddha image and out the tank, where it was channeled downslope, into the catchment zone of the Mya Kan Reservoir. This flow pattern, we believe, was aimed at sanctifying the water as it flowed out of the tank, thus tying this life-giving substance, the water tank, and the mountain itself, to notions of purity, fertility, prosperity, and power (e.g., Beer 2003:5, 69, 72, 77, 97; Fisher 1993:23). In other words, we propose that Nat Yekan served as the physical and spiritual apex of Bagan’s broader water management system.

The Water Management System. But what of the system that Nat Yekan was presumably part? Our archaeological reconnaissance on Thetso-Taung ridge identified a complex set of water management features that encompassed the entirety of the Thetso-Taung ridge (Figure 35). Our findings confirm that classical engineers used the natural topography, in conjunction with a series of channels, terraces, and tanks, to effectively collect and redistribute water derived entirely from rainfall. Nat Yekan tank was a key node in this water management system, and it functioned as the terminal collection and distribution point that fed the expansive Mya Kan Reservoir situated at the base of the Tuyin-Thetso uplands, to the west (Figure 36; Aung-Thwin 1990:28; Luce 1969:56). Water entered the Nat Yekan tank through two primary rock-cut and stone-lined channels. One channel ran along the western side of the Thetso-Taung ridge, starting from a small collection tank at the base of Monument #2225, eventually discharging into the southeast corner of Nat Yekan tank. The creation of this intricate water management
system was likely aimed at taking advantage of the beneficial precipitation regime associated with the Medieval Climate Anomaly (MCA; 900-1300 CE).

Religion. A series of religious structures, including a number of small temples – some with associated inscription houses and/or small shrines containing Buddha statues – were also established on Thetso-Taung during the spillway phase, including Monuments 2223, 2224, and 2225 (Pichard 2001:202-209; see Figures 35 and 36). Most of these are believed to have been constructed in the 13th century, and many have been renovated in more recent times. Significantly, two of these monuments, #s 2223 and 2225, are associated with small rock-cut water tanks (Figure 37). This physically connects them with water storage, and symbolically ties them – at least to some degree – to water-related rituals and broader notions of fertility and prosperity. Intriguingly, not only is Monument 2225 physically connected to a rock-cut tank that serves as the initial collection node in Thetso-Taung’s wider water management system, its building façade incorporates a depiction of the head of a water-serpent, or makara (Figure 38). Although this façade was likely added to the temple in recent times, it is a poignant reminder of the symbolic connection between Thetso-Taung and water-related activities, of both the secular and sacred variety.

Phase 3: 14th Century Embankment Phase

Our 2018 excavations above the spillway in the northwest corner of Nat Yekan tank indicate that this water outlet was eventually covered by an embankment engineered to retain water (Figure 39; it remains unclear whether the rest of the tank saw additional embankment work at this time). This would have increased the holding capacity of the tank from 1200 to 2000 m³ of water. We believe that this modification was carried out in the early 14th century, coinciding with the onset of the Little Ice Age (LIA) climate regime (1300-1570 CE), with its marked decline in precipitation and frequent droughts. We surmise that it was a combination of factors that contributed to the decision to modify Nat Yekan into a more traditional water collection and storage feature: 1) the drier climate regime may have stimulated a desire to retain as much water on top of the Thetso-Taung ridge as possible, in order to meet the needs of the monasteries, temple personnel, and pilgrims that frequented this place; 2) the breakdown of Bagan’s overarching political and economic systems may have also diminished the Crown’s ability to maintain the large-scale, tightly integrated, water management system that had manifest during times of plenty; and, 3) the general trend towards decentralization may have fostered more localized control of resources of all kinds, including water, resulting in the disarticulation of state infrastructure and concomitant efforts to enhance village-level autonomy and resilience, all at the expense of the Crown (this is a common response to significant climate perturbances). We suspect that Ka Tak Kan, the fully embanked water tank on the east side of the Thetso-Taung ridge – which is not fully integrated into the rest of the Nat Yekan water management system – was likely also built at this time to enhance the water collection and storage capacity of the Thetso-Taung ridge (see Figures 35 and 36).

Discussion and Conclusions
In summary, we propose that Nat Yekan was not simply a collection node within Bagan’s broader water management system. Rather, during the spillway phase this reservoir appears to have been integral not only to the initial collection and subsequent redistribution of water across the Bagan plain via a series of interconnected canals and reservoirs, but also, through its associated iconographic imagery, it may have been intended to symbolically purify this water, enhancing its fertility prior to its flowing downslope, into the city’s peri-urban zone. Indeed, we believe that Nat Yekan’s iconographic elements served a similar purpose as the imagery found in association with the intricately carved river beds along the Stung Kbal Spean River in the Kulen Hills, northeast of the Khmer city of Angkor (Figure 40). Here, water was made to flow over and around a series of Shaivite symbols (Boulbet 1979; Chevance 2005; Feneley et al. 2016:282-284; Hendrickson 2011:451; Jacques and Dumont 1999; Tan 2014:3), many of which – such as carved linga – are clearly tied to notions of fertility (Tawa 2001:134). These symbolically charged water management nodes, and the extensive water storage and redistribution system of which they were part, celebrated the Angkor king’s role as guarantor of prosperity for the Khmer kingdom (Tawa 2001:141). Similar Hindu iconography is also associated with the river bed at the Sahasralinga pilgrimage site on the Shalmala River, in the Indian state of Karnataka. Apparently, iconographic embellishments to river beds and stone-cut tanks was a common means through which water was transformed into a more sacred, and ideologically vital, substance in the pre-industrial states of monsoonal South and Southeast Asia. This may explain why the iconography of Kbal Spean and Nat Yekan overlaps in some significant ways, including the use of similar Naga-serpent themes (Figure 41) and crocodile images (Figure 42), even though the Khmer symbolism references Hindu beliefs, and the Burmese context favors Buddhist principles.

The integral relationship between water management and ritual practice – and the broader implications this relationship has for the development of state ideologies, the characteristics of political organizations, and the nature of societal inequalities – has been demonstrated throughout the world’s monsoonal regions (e.g., Boomgaard 2007:15; Lansing 1991; Scarborough and Lucero 2010; Scarborough 2003:84, 88). Across Southeast Asia, iconographic imagery has long been employed to reaffirm the ideological connection between water and ritual (Boomgaard 2007:6). As has been underscored by Barbara Andaya (2016:243): “For Southeast Asian societies generally, ritual water was highly valued because of its life-giving, healing, and transformative properties. Together with the appropriate ceremonial, the very act of pouring water over a tangible emblem of fertility (like an upright linga) could ensure the community’s well-being.” Similarly, Bob Hudson (2004:209) underscores that: “Buddhist cosmology and practice are bound up with the ritual pouring of water, reflecting the story of how Buddha, at the moment of his enlightenment, was able to call on the water he had poured in previous lives to witness his good deeds to come back and wash away the forces of evil.” We surmise that at Bagan, similar ideological principals underpinned the basic construction and symbolic embellishment of the Nat Yekan “sacred water tank.” This would also imply that the Tuyin-Thetso uplands are an example of what Vernon Scarborough (1998) has referred to as “water mountains”: specialized ritual and economic nodes that enhance basic lifeways, socio-political integration, and agricultural production through the collection, sanctification, and redistribution of water, often under the auspices and patronage of societal elites (Scarborough 2003:84).
Acknowledgements. We express our gratitude to the Ministry of Religious Affairs and Culture and the Department of Archaeology and the National Museum for allowing us to carry out our field work at Bagan, and for facilitating our research visas. Particularly noteworthy is the encouragement and assistance provided by Director General for Archaeology, U Kyaw Oo Lwin, and Director of International Relations, Daw Mie Mie Khaing. In Bagan, the project benefited from discussions with, and support from, Deputy-Director General, U Thein Lwin, U Aung Aung Kyaw, Director of the Bagan Archaeology Branch, and both Ye Lwin and Nyein Lwin of the Department of Archaeology. The Department of Archaeology in Bagan also provided housing for some of the IRAW@Bagan team members at their compound in Old Bagan, and Director U Aung Aung Kyaw and his GIS team graciously shared GIS resources that will be useful for our hydrological and settlement studies. We extend our appreciation to U Nandavamsa, Abbot of Tuyin Monastery, for assisting with our preliminary investigations at the Nat Yekan sacred water tank, and for helping us with lodging, food, and storage space during our 2018 investigations. Nyi Lynn Seck, of 3xvivir – Virtual Reality Productions donated his time and equipment to help us generate a high resolution, 3D representation of the interior of the tank. A number of experts in the archaeology of Myanmar also provided us with useful insights and inspiration, including Michael Aung Thwin, Bob Hudson, Elizabeth Moore, and Janice Stargardt. We graciously acknowledge the generous financial assistance of the National Geographic Society, who funded our 2018 research though an Explorer Grant. Finally, the PI extends his thanks to Trent University for providing seed funds for the 2017 research program as part of the Vice-President of Research Strategic Initiatives Grant Program.

![Map of Southeast Asia](image)

Figure 1. Location of Bagan and some of the other pre-industrial capitals of Southeast Asia.
Figure 2. Google earth image showing the location of Bagan’s major water management features.

Figure 3. Google earth image showing the location of Bagan’s walled epicenter, the Tuyin mountain range, the Nat Yekan sacred water tank, and the Mya Kan reservoir.
Figures 4 and 5. Figure 5, Left: The Tuyin mountain range as seen from the Bagan plain; Figure 5, Right: the Tuyin Pagoda at the northern end of the range.

Figure 6. Google map of the Tuyin-Thetso area showing the location of the Ka Tak Kan and Nat Yekan water tanks, along with other related features.
Figure 7. Drone photo of the Nat Yekan sacred water tank in May 2017 (note the carved stair in the foreground).

Figures 8 and 9. Figure 8, Left: Dr. Pyiet Phyo Kyaw (Co-applicant, University of Yangon) at the Nat Yekan sacred water tank in October 2013 (note the water labyrinth image and carved stair in the background); Figure 9, Right: the IRAW@Bagan research team in the dry tank in May 2017 (note the carved stair and Naga-Buddha/Mucalinda-Naga image in the background, beneath the proposed spillway).
Figure 10. Excavations in Ka Tak Kan (upper right) and Nat Yekan (lower left) in May 2018.

Figure 11. Representative samples of poorly preserved earthenware sherds collected during the 2018 excavations.
Figure 12. Quarry Scars in the bottom of Nate Yekan tank (lower left corner of the photo).

Figure 13. 3D image showing the location of Nat Yekan’s west, northwest, east, and “symbolic” (non-functional) stairs, facing north (image courtesy of Nyi Lynn Seck, 3xivr Virtual Reality).
Figure 14. The Shwezigon Pagoda, Bagan.

Figure 15. Quarry scars exposed beneath the northwest embankment wall (forming an in-stepping channel “choke” feature).
Figure 16. Quarry area located at the northwest base of Mount Tuyin.

Figure 17. Sandstone “brick” wall enclosing the eastern side of Nat Yekan tank.
Figure 18. Example of a clay floor lining and associated reservoir embankment wall in Ka Tak Kan tank.

Figure 19. Early Bagan Period brick in the east wall of Nat Yekan tank.
Figure 20. Middle or Late Bagan Period brick in the east wall of Nat Yekan tank.

Figure 21. Left – water labyrinth image from Nat Yekan tank; Right – water labyrinth image from Le-myet-hna pagoda, likely depicting Mahosadha-Jataka #546.

Figure 22. Left Image: In-stepping sandstone choke feature (left) and flow channel (right) below the embankment wall in the northwest corner of Nat Yekan tank (facing south, into Nat Yekan tank). Right Image: Contemporary choke and sluice gate along the aqueduct system at Minbu.
Figure 23. The Mya Kan Inscription.
Figure 24. The seasonally dry Thetso-Taung waterfall, (the white spot in the upper center of the picture), with the Mya Kan Reservoir in the foreground (Nat Yekan Tank is located on the ridge in the upper right corner of the image).

Figure 25. Drainage channel at the base of the Thetso-Taung waterfall, to the southeast of Mya Kan reservoir.
Figure 26. A hand-cut round hole in the center of the Nat Yekan tank which was possibly used to hold a “lotus pillar” that was symbolic of fertility and useful for gauging water levels.

Figure 27. Lotus pillar in the center of the water tank at the Damma-Yazika Pagoda.

Figure 28. Lotus pillar in the center of the water tank at Minnanthu Village, the tank being seasonally dry.
Figure 29. Half of a pillar support discovered in Nat Yekan during the 2018 field season.

Figure 30. Symbolic (non-functional) stair carved into the sandstone bedrock of the east wall.
Figure 31. Iconography associated with Nat Yekan’s west wall.

Figure 32. Iconography associated with Nat Yekan’s northwest corner.
Figure 33. Iconography associated with Nat Yekan’s south wall.

Figure 34. Imagery/modifications in the Northwest corner of Nat Yekan (bottom); base level of the proposed spillway and the overlying retaining wall/dam (top).
Figure 35. Major components of the Thetso-Taung water management system.

Figure 36. Google earth image of the Thetso-Taung water management system.
Figure 37. Rock-cut tank associated with Monument #2225.

Figure 38. Makara or water-serpent image associated with the façade of Monument #2225.
Figure 39. Excavations into the reservoir embankment wall in the northwest corner of Nat Yekan tank.

Figure 40. The carved river bed at Kbal Spean, Greater Angkor region, Cambodia (note the abundance of yoni and linga).
Figure 41. Left – Kbal Spean iconography depicting Visnu resting on Ananta (Sesha), both floating on the cosmic ocean at the time of creation; Right – Nat Yekan iconography depicting the Naga King using his hood and tail to protect the meditating Buddha from a rain storm.

Figure 42. Crocodile images at Kbal Spean (left) and Nat Yekan (right).

References Cited

Andaya, Barbara Watson

Aung Myint and Elizabeth Moore

Aung-Thwin, Michael

Aung-Thwin, Michael, and Maitrii Aung-Thwin
Beer, Robert

Bhattacharya, Sayan

Boomgaard, Peter

Boulbet, Jean

Buckley, Brendan M., Kevin J. Anchukaitis, Daniel Penny, Roland Fletcher, Edward R. Cook, Masaki Sano, Le Canh Nam, Aroonrut Wichienkeeo, Ton That Minh, and Truong Mai Hong

Buckley, Brendan M., Roland Fletcher, Shi-Yu Simon Wang, Brian Zottoli, and Christophe Pottier

Cook, Edward R., Kevin J. Anchukaitis, Brendan M. Buckley, Rosanne D. D’Arrigo, Gordon C. Jacoby, and William E. Wright

Cooler, Richard M.

Daw Thin Kyi

Duroiselle, Charles (editor)

Kan Hla, U

Kummu, Matti

Lansing, J. Stephen

Leidy, Denise Patry
2008 The Art of Buddhism: An Introduction to its History and Meaning. Shambhala, Boston.

Lieberman, Victor B.

Lieberman, Victor, and Brendan Buckley

Luce, Gordon H.

Moore, Elizabeth

Moore, Elizabeth, U San Win, and Pyiet Phyo Kyaw

Moore, Elizabeth, and Win Maung (Tampawaddy)

Ni Tut (translated by Nyien Chan Soe)

Nyan Hlaing Lynn

Nyunt Nyunt Shwe

Ortloff, Charles R., Michael E. Moseley, and Robert A. Feldman

Pe Muang Tin and Gordon H. Luce

Pichard, Pierre

Scarborough, Vernon L.

Scarborough, Vernon L., and Lisa J. Lucero

Scott, James C.

Shubhangi, K., and D. Shireesh

Stadtner, Donald M.

Stargardt, Janice

Strachan, Paul

Tan, Noel Hidalgo

Tawa, Michael

Thet Oo, and Maung Hlaing

Ward, William E.

Win Kyaing (U)

Wohlfarth, Barbara, Charles Higham, Kweku Afrifa Yamoah, Akkaneewut Chabangborn, Sakonvan Chawchai, and Rienk H Smittenberg

Wolters, Oliver W.

Wündsch Michael, Siria Biagioni, Hermann Behling, Bastian Reinwarth, Sarah Franz, Peggy Bierbaß, Gerhard Daut, Roland Mäusbacher, and Torsten Haberzettl
2014 ENSO and Monsoon Variability During the Past 1.5 kyr as Reflected in Sediments from Lake Kalimpaa, Central Sulawesi (Indonesia). *The Holocene* 24(12):1743-1756.

Yamoah, Kweku Afrifa, Charles F. W. Higham, Barbara Wohlfarth, Akkaneewut Chabangborn, Sakonvan Chawchai, Frederik Schenk, and Rienk H Smittenberg